
Introduction to OpenStack

Carlo Vallati

Assistant Professor

Dpt. Information Engineering – University of Pisa

carlo.vallati@iet.unipi.it

Cloud Computing - Definition

• Cloud Computing is a term coined to refer application and services moved from local computing deployments to somewhere

into the Internet “Cloud”

• Outsourced services are accessed through the Internet using common protocols and networking standards

• “Clouds” are datacenters offering resources (computing and storage) on demand in a virtualized environment

Internet

Cloud Computing – Business Model

Cloud computing business model is simple:

• Cloud computing (e.g. Amazon, Rackspace, Google) companies build large data-centers to sell low-cost and scalable

storage and computing

• Other companies move their application and services to the cloud

Example: Netflix

https://aws.amazon.com/solutions/case-studies/netflix/

Cloud Computing - Advantages

Cloud Computing paradigm in general offers a wide set of advantages for Cloud providers and end users:

1. More efficient usage of resources: virtualization enables sharing of physical services, storage and networking

capabilities across different users. Such shared infrastructure enables multi-tenancy, making the most from the

available infrastructure. This results in lower costs for computing and storage

2. High scalability: provision of services can be based on current demand requirements. Such dynamic

provisioning can be done automatically using software automation for dynamic scaling. This results in the

possibility of dynamically expand/contract the required service

Shared infrastructure Dynamic Provisioning

Cloud Service Models

Cloud Service Models – Definitions

• Infrastructure as a Service: IaaS provides

virtual machines, virtual storage, virtual

infrastructure, and other hardware assets as

resources that clients can provision

• Platform as a Service: PaaS provides

virtual machines, operating systems,

applications, services, development

frameworks, transactions, and control

structures

• Software as a Service: SaaS is a complete

operating environment with applications,

management, and the user interface

What is OpenStack?

• Several cloud platforms are available today

• Some of them are also available as open-source

• OpenStack is a free open-source software platform

for IaaS cloud computing

• Started as a joint project of Rackspace Hosting and

of NASA in 2010

• Openstack today is supported and managed by the

OpenStack Foundation, which composed by more

than 500 companies (e.g. VMware, CISCO, Citrix,

Oracle, Ericsson, IBM, etc)

OpenStack @ CERN

OpenStack is widely adopted today by

companies to build large public/private

cloud deployments.

Other User Stories:

https://www.openstack.org/user-stories/

OpenStack Software Platform

• OpenStack runs on top of commodity computers (no

particular hardware is required)

• The software platform is installed and runs on top of

the host operating system (e.g. Linux OS) in order to

create a distributed “cloud operating system”

• Such cloud operating system support the creation of

different Virtual Machines which can be connected

through Virtual Networks

Hardware

Linux Operating System

VM1 VM2 VM3

Openstack platform

OpenStack Instance

• Nodes running the OpenStack software are

configured to form a single OpenStack instance

combining together computing and storage

• Nodes are usually connected through a high speed

local area network

• In an instance at least a node is configure as

controller which is in charge of coordinating

Openstack functions and managing the resources

available to the instance

• Other nodes are configured as compute nodes that

offer computation and storage resources to run

virtual machines

Linux Operating System

Management and

Coordination

Services

Openstack Controller

VM1 VM2

Openstack Compute

VM1 VM2

Openstack Compute

OpenStack Architecture

• The controller node exposes a web dashboard to allow

users and administrators to manage Virtual Machines

and allocate Compute, Storage and Networking to them

• Each service composing OpenStack exposes a set of

REST APIs is exposed to allow automatic management

directly from external applications

OpenStack Services

• OpenStack software is highly modular. Each service is provided by a different module, maintained as a separate project

• Apart from Core Services, mandatory on each installation, other services are optional and can be installed only if the provided

functionalities are needed

Mandatory

Services

Optional

Services

OpenStack Services

• Services are installed on the controller node or

in the compute nodes according to their

functionalities

• Some services are required to be installed on

both controller and compute nodes with

different configurations

• All the services in the controller node leverage

some supporting services, one Database (e.g.

MySQL) for data storage and one Message

Broker (e.g. Rabbit MQ) for message

exchange

Keystone

• Keystone is the identity management

component

• Keystone is used by OpenStack for

authentication and high-level authorization

• It ensures security by granting/denying access

to objects (e.g. Virtual Machines or Virtual

Networks) to different Users

• Objects are grouped into projects,

authorizations can be granted per project

• Keystone is installed in the Controller node

Access

Granted

Access

Denied

Keystone

• Keystone implements a token-based

authorization

• An user first interacts with keystone

using an user/pass based authentication

• If successful a token is received

• The token is used to access all OpenStack

services

• Each service takes care of validating the

token

Nova

• Nova is the instance management

component

• It is responsible for the instantiation and

management of Virtual Machines

• Nova does not implement a new

virtualization technology but leverage

existing solutions interacting with the

hypervisors

• Different virtualization technologies,

including KVM, Xen, Vmware ESX, are

supported

Nova – Controller Subcomponents

• The Nova module installed on the controller node

is composed of the following sub-services: API

service, scheduler service, conductor service and

network service

• API service: exposes the external interface to

users

• Conductor: manages all the control operations

• Scheduler: suggests placement of VMs in the

instance according to the status of the compute

nodes

• Network: implements basic networking services

for VMs

Nova – Compute Subcomponents

• On the compute node the Nova module is

composed only of the compute service

• The compute service receives commands from

the controller (Conductor service) and

instantiates/terminates VMs instances interacting

with the hypervisor

• Drivers for different hypervisors are maintained

to interface the compute service to different

hypervisors

• Each driver exposes a common interface towards

the specific APIs of each hypervisor

Glance

• Glance is the image management service

• Each VM is instantiated from an image which

includes a specific operating system pre-installed

• Glance manages such collection of VM templates

• Images can be customized, e.g. a web server

image has pre-installed a web server package

• Glance subcomponents are: glance (for image

management) and glance storage (for storage

management)

• Glance storage supports different storage options

Neutron

• Neutron is the network management

components

• When instantiated VMs require a virtual

network for communication

• Neutron is responsible for managing

infrastructure that allows the creation of

Virtual Networks among VMs running on

different Openstack compute nodes

• The Local Physical Network that

interconnects Computing nodes is

exploited to span such virtual networks

over different compute nodes

Linux Operating System

VM1 VM2

Compute 1

VM3 VM4

Compute 2

Local Physical Network

Virtual

Networks

Neutron

• Neutron subcomponents are: server and

agent

• Neutron Agent: supports the creation of

virtual networks across different compute

nodes managing dispatching of data on

top of the local physical network

• Neutron Server: coordinates neutron

agents of the computing nodes and

exposes APIs for the management of

Virtual Networks

Linux Operating System

VM1 VM2

Compute 1

VM3 VM4

Compute 2

Neutron Server

Controller

Neutron

Agent

Neutron

Agent

Control data VN1 VN2

Neutron

• Virtual Networks are usually private networks

• Neutron allows VMs to be connected to

external networks, in order to allow VMs to be

accessible from the internet

• To this aim a Network Node (usually the

controller node) has to be included in the

instance with a connection towards a public

network

• This node will reroute traffic from/to the

private VNs to/from the public networks

Virtual Routers

VM1 VM2

Compute 1

Neutron Server

Controller

Public

Network

Neutron

Agent

Neutron

• Public IP addresses can be assigned to

VMs

• Virtual Routers at the edge of each

Virtual Network will take care of

implementing Network Address

Translation

Cinder

• Cinder is the component responsible for

managing volumes

• Each VM has a default volume which

contains the operating system

• If a VM requires extra storage additional

volumes can be dynamically created and

attached to an instance

• Cinder can be configured to use local

storage (e.g. Linux LVM) or shared file

systems (e.g. NFS)

Ceilometer

• Ceilometer is the telemetry component

• It monitors all the component of the

instance, measuring the resource being

used by each User

• Data collected by Ceilometer can be

used for billing purposes

• Ceilometer also collects telemetry

statistics which can be used to check the

status of the system

Horizon

• OpenStack functionalities are exposed

to Users though a web interface

• The dashboard is usually exposed by

the controller

• It allows management of all the

instances aspects

• A set of command line tools are also

included for backend management

Service APIs

• Every OpenStack service exposes a set

of APIs

• All APIs communication is REST

• APIs are exposed by each service for

inter-service interaction and to expose a

set of functionalities to Users

• APIs can be exploited by Users to embed

automation process in external

applications

Documentation: http://developer.openstack.org/api-ref.html

OpenStack Service Interactions

Instances Live Migration

• Although Nova Scheduling automatically

schedules VM execution on compute

nodes based on resource status, manual

placement of VM on a specific node is

allowed for the Instance Administrator

• To this aim, OpenStack allows Live

Migration of VMs among different

compute node

• Live Migration allows administrators to

move a VM from one host to another

minimizing the down-time without

turning the VM off

VM live migration requires Nova and Cinder to be

configured with a storage which is shared among all the

compute nodes, in order to allow VM transfer without

downtime.

A shared storage can be implemented through NFS for

example.

GlusterFS

• Although NFS is a shared storage for volumes and VMs, its

centralized architecture refrains its usage in practical deployments

• Distributed alternatives are usually adopted to increase resiliency to

failure and guarantee scalability exploiting storage locally available to

compute nodes

• GlusterFS is an example of network-attached storage file system

usually adopted in OpenStack as shared storage point

• GlusterFS can be used locally in the same way is configured NFS

• There is no distinction between clients and server, all the nodes

participate offering some of the local storage

GlusterFS – Basic Modes

• GlusterFS is highly configurable, with

different levels of redundancy and replica

• Basic configuration includes: replicated

volumes, distributed volumes and

striped volumes

GlusterFS – Advanced Modes

• In order to meet different requirements different combination of basic modes are allowed: striped

replicated and distributed replicated

Demo Time!

• A simple OpenStack instance composed

by a controller and a compute node is

emulated by means of (oh the irony!) two

virtual machines running on top of

VirtualBox

• Two emulated Ethernet network are

configured: one private and one public

• The controller node is the one connected

to both the network as it is configured as

network node

VM2VM1

OpenStack

Controller

OpenStack

Compute

172.242.0.X/16 Local Private Network

192.168.58.0/24 Public Network

tap0

tap1

Demo

• VM images are available if some wants to replicate the test:

• http://atlantis.iet.unipi.it/controller.ova

• http://atlantis.iet.unipi.it/compute.ova

• VM username: root password: reverse

• OpenStack interface: http://172.242.0.100/ username: admin password: 7f937d60365440c4

http://atlantis.iet.unipi.it/controller.ova
http://atlantis.iet.unipi.it/compute.ova
http://172.242.0.100/

References

• https://www.openstack.org/

• https://wiki.openstack.org/wiki/Main_Page

• http://docs.openstack.org/openstack-ops/openstack-ops-manual.pdf

• http://www.gluster.org/community/documentation/index.php/Main_Page

https://www.openstack.org/
https://wiki.openstack.org/wiki/Main_Page
http://docs.openstack.org/openstack-ops/openstack-ops-manual.pdf
http://www.gluster.org/community/documentation/index.php/Main_Page

